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Abstract

Our ability to plan and make effective decisions depends on an
accurate mental model of the environment. While learning is
often thought to depend on external observations, people can
also improve their understanding by reasoning about past ex-
periences. In this work, we examine whether counterfactual
simulation enhances learning in environments where planning
is straightforward but encoding new information is challeng-
ing. Across two studies, participants navigated gridworlds,
learning to avoid hazardous tiles. Some participants engaged in
counterfactual simulation, constructing alternative plans after
observing navigation outcomes. Others learned purely from
experience. While counterfactual paths contained fewer haz-
ards than initial ones, we found reliable evidence across both
studies that counterfactual simulation conferred no measurable
advantage in either navigation performance or explicit environ-
ment learning. These findings shed new light on the scope
of learning by thinking—suggesting that the mechanism by
which counterfactual reasoning enhances learning might not
be by encouraging deeper encoding of past experiences.
Keywords: counterfactual simulation, learning, thinking,
planning

Introduction
Imagine that you’ve just lost a game of chess. Frustrated and
determined to redeem yourself, you spend the next few days
preparing for a rematch. What can we do to make ourselves
a more formidable opponent? One option is to gain experi-
ence by playing more games. Another is to reflect on our
mistakes through counterfactual simulation – thinking about
what went wrong and what could have led to a better out-
come (Byrne, 2016; Gerstenberg, 2024). This is an instance
of “learning by thinking”: somehow, without gaining any new
external information, we gain new insights by reasoning in-
ternally about what we already know (Lombrozo, 2024).

Learning by thinking is both pervasive and impactful
(Schwartz & Black, 1999). For example, prior work has
shown how self-explanations can help people understand the
limits of their knowledge (Rozenblit & Keil, 2002) and fa-
cilitate deeper understanding in classroom settings (Chi et
al., 1989). Thought experiments have played an important
role throughout the history of science (Gendler, 1998; Nor-
ton, 1991). But how can learning occur without new external
input?

Lombrozo (2024) suggests that learning by thinking makes
some forms of knowledge more accessible to the learner
in a process termed “representational extraction” (Cushman,
2020). Accordingly, we learn by transforming knowledge

into a more explicit format. For example, a chess player
can use their knowledge of how pieces move to learn how
a move would affect the coverage of their pieces without ex-
ternal feedback. Is this the only way that thinking might lead
to new knowledge?

Prior work in social psychology characterizes the func-
tional role of one kind of thinking – counterfactual reasoning
– into two main categories: upward and downward counter-
factual simulations (Epstude & Roese, 2008; Roese, 1994).
Downward counterfactual simulations compare what actually
happened to worse alternatives. These potentially serve a reg-
ulatory role, reducing the feeling of regret about negative out-
comes (Parikh et al., 2022). In this way, future learning may
be facilitated indirectly through emotion regulation and mo-
tivation. Upward counterfactual simulations compare what
happened to better alternatives. These counterfactuals are
thought to serve a preparatory role, guiding us toward bet-
ter decisions in the future. Upward counterfactual thoughts
are more likely to arise following failure and can help shape
more effective action policies (Markman et al., 1993; Roese,
1997; Roese & Olson, 1993; Smallman & McCulloch, 2012).

Here, we investigate whether counterfactual simulation en-
hances learning in a planning task where success depends
on both acquiring an accurate model of the environment and
planning effectively with that model. Specifically, we de-
signed a task in which participants navigate between varying
start and goal locations in a gridworld, learning to avoid haz-
ardous tiles that slow them down with a fixed probability (see
Figure 1). While planning an efficient route given a known
model of the environment was straightforward, learning the
probabilistic structure itself was designed to be challenging.
In doing so, we are able to explore concretely how learning
by thinking applies to counterfactual simulation in a planning
task.

To foreshadow our main result, we found across two stud-
ies that participants who engaged in counterfactual simulation
did not perform better than participants who learned purely
from experience. Even though participants generated coun-
terfactual simulations that would have resulted in better out-
comes in a given situation, doing so did not lead them to con-
struct a better model of the environment or to plan better with
their learned model. These findings highlight the boundaries
of learning by thinking, suggesting that counterfactual rea-
soning does not always enhance learning. We discuss the im-
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Figure 1: Experimental paradigm. Across both studies, participants navigated from start (orange tile) to goal position (green
tile) while trying to minimize the number of quicksand tiles encountered. The the ground truth grid at the top shows which tiles
are safe and which ones are unsafe. Safe tiles are always safe but unsafe tiles have an 80% chance of being quicksand. Expe-
rience: In the experience-only condition, participants completed 15 navigation trials in each block. Participants first planned
a full route to the goal and watched the agent reveal which tiles in that path were sand or quicksand. Over successive trials
(gray arrows) we expect participants to encounter less quicksand. Hypothetical: In the experience + hypothetical condition,
participants completed a hypothetical trial after each experience trial (blue arrows). They planned a route to the goal from
a different starting location but without receiving any feedback. Counterfactual: In the experience + counterfactual condi-
tion, participants completed a counterfactual trial after each experience trial (red arrows). Participants saw the outcome of the
previous experience and planned an alternative, more efficient route.

plications of this work and suggest boundary conditions for
learning from counterfactual simulations.

Study environment
We designed an environment where success depends on
learning the environment’s underlying probabilistic struc-
ture.1 Participants navigate an agent from a start to a goal
position in an 8 × 3 gridworld (called an experience trial).
Each tile is either safe or unsafe, determining its likelihood of
appearing as sand or quicksand on a given trial. Specifically,
safe tiles always appear as sand, while unsafe tiles become
quicksand with 80% probability. For an optimal learner, this
means that a single observation of quicksand would indicate
with certainty that the tile is unsafe. Stepping on a quick-
sand tile slows the agent down, impeding progress towards
the goal. The objective is to reach the goal while minimiz-
ing quicksand encounters. Before observing the agent fol-
low its path, participants must plan their route. Because the
sand/quicksand state of a tile is only revealed when stepped
on, effective navigation requires inferring which tiles are un-
safe based on experience.

1All materials, data, analyses, preregistration links can be found
at https://anonymous.4open.science/r/cogsci2025-0348.

Gridworld selection We selected gridworlds where suc-
cessfully learning the environment would lead to a substan-
tial improvement compared to a baseline which assumes that
each tile has a 50% chance of being safe or unsafe. While the
gridworlds were selected to be particularly rewarding if par-
ticipants adopted a planning-based strategy using the proba-
bilistic structure of the environment, they do not effectively
discourage using less generalizable forms of task representa-
tion like path memorization. To discourage against learning
simpler policies like rote memorization of a single path, we
varied participants’ start and goal locations. Agents start at
a random location on the first column of the grid, and were
asked to navigate to a goal location randomly selected from
the tiles in the last column. We also added randomly placed
road blocks on each trial that prevented movements to that
spot.

Study 1: Learning from hypothetical vs.
counterfactual simulations

The goal of our first study was to explore whether performing
counterfactual simulation in a memory-intensive gridworld
environment would led to improved learning compared to the
experience-only baseline, and another form of mental simu-

https://anonymous.4open.science/r/cogsci2025-0348


Figure 2: Manipulation check. To see if participants under-
stood the counterfactual condition manipulation, we checked
if their counterfactual paths contained fewer unsafe tiles than
their experienced paths. A Study 1 manipulation check.
Counterfactual paths had fewer unsafe tiles than hypotheti-
cal paths. These two measures are comparable because the
distance of the starting location to the goal in the simulation
trials was matched in both conditions. B Study 2 manipula-
tion check. Because experience trial and counterfactual paths
share start and goal positions, they are directly comparable.
Participants’ counterfactual paths contain fewer unsafe tiles
than their experienced paths. Note: Error bars in all figures
show 95% bootstrapped confidence intervals.

lation: hypothetical simulation (Gerstenberg, 2022).

Methods
Participants and design Participants were recruited via
Prolific. A total of 60 participants (age: median = 33, range
= 19-64; gender: 34 female, 22 male, 3 non-binary, 1 other;
race: 6 black/African American, 6 Asian, 1 American In-
dian/Alaska Native, 7 multiracial, 40 white) completed the
pilot study, equally divided between three between-subjects
conditions: experience-only, experience + hypothetical, and
experience + counterfactual.

All participants were native English speakers residing in
the US. Participants were paid $6 for an estimated 30 minutes
to complete the study (mean completion time: 33.8 mins). In
addition, participants were awarded a bonus of up to $2.40
depending on their performance on the task (mean bonus:
$1.00). Both experiments were programmed using jsPsych
(De Leeuw, 2015).

Stimuli Using the sampling strategy described in the ‘Study
environment’ section, we selected four gridworlds. Each
gridworld characterized the probabilistic structure of one of
the blocks in the experiment (see the ground truth in Figure 1
as an example).

Procedure Participants were instructed that their task was
to help an agent navigate deserts filled with quicksand. They
were told that quicksand is a hazard, that weather changes
whether a tile is quicksand or not on each day (trial), and
that regular weather patterns make some tiles always safe
and others unsafe, where unsafe tiles were quicksand 80%
of the time. After reviewing the instructions, participants had
to successfully complete comprehension checks to proceed

to the main experiment. Otherwise, they were redirected to
read the instructions again. The experiment consisted of four
blocks, each featuring a different gridworld environment.

In the learning phase, participants completed 15 experi-
ence trials, guiding the agent from a starting location to a goal
tile. Their goal was to construct efficient paths that minimized
encounters with quicksand. During each experience trial, par-
ticipants were shown the agent at the starting location and
instructed to construct a path by clicking on successive tiles
until reaching the goal. Participants watched the agent follow
the path, revealing whether each tile that it stepped on was
sand or quicksand. The agent moved through quicksand tiles
considerable slower than through safe tiles. Participants were
rewarded $0.04 for each experience trial, with a deduction of
$0.01 per quicksand tile encountered, down to a minimum of
$0.00.

Participants were assigned to one of three between-subjects
conditions. In the experience-only condition, participants
proceeded directly to the next experience trial after receiv-
ing their feedback and bonus. In the experience + hypotheti-
cal condition, participants engaged in an additional hypothet-
ical trial after each experience trial. They were instructed
to “engage in a thought experiment and consider what to do
if the agent started at other points.” They did this by plan-
ning a new path to the goal, imagining it was a new day (i.e.,
that tiles that were quicksand in the previous experience trial
would not necessarily be quicksand in the hypothetical trial
again). The start location was randomly chosen from the set
of available tiles a distance d from the goal. In the experience
+ counterfactual condition, participants instead completed a
counterfactual trial after each experience trial. In counterfac-
tual trials, they were prompted to “take some time to reflect on
the plan you made and consider better alternatives.” Unlike in
the hypothetical trials, participants imagined the scenario as
going back in time on the same day, meaning that any tiles re-
vealed in the experience trial remained revealed. Importantly,
in both the hypothetical and counterfactual condition, partic-
ipants received no feedback about their simulated paths. The
agent did not walk on these paths, so they did not learn what
would happen in the hypothetical condition, or what would
have happened in the counterfactual condition.

At the end of the experiment, participants completed a
post-experiment questionnaire, where we asked for demo-
graphic information, details about their input device, subjec-
tive effort and difficulty ratings, and open-ended feedback.

Results and discussion
We will first discuss participants’ performance on the simu-
lated paths, and then on the experienced paths.

Performance on simulated paths Figure 2a shows the
number of unsafe tiles that the agent encountered in the sim-
ulated trials in the hypothetical and counterfactual condition.
To compare participants’ performance, we ran a Bayesian
mixed-effects model (using a Poisson linking function for
count data) with random intercepts for gridworlds and ran-



dom intercepts and slopes for participants. Counterfactual
paths contained fewer unsafe tiles than hypothetical paths
(β = 0.178, 95% CrI [0.129,0.225]). To put this into per-
spective, a model that plans optimally but has a prior belief
that all tiles have a 0.5 probability of being unsafe would en-
counter an estimated 3.49 unsafe tiles, relative to participants’
estimated 3.33 tiles in the hypothetical condition.

Performance on experienced paths Figure 3 shows that
participants’ performance improved as they gained more ex-
perience. Over successive trials within the same gridworld,
they encountered fewer unsafe tiles, suggesting that they were
integrating past experiences to make better decisions.

Did counterfactual simulation improve participants’ abil-
ity to navigate the environment? To assess whether partic-
ipants in the counterfactual condition avoided more unsafe
tiles, we fit a Bayesian mixed-effects model with fixed ef-
fects for condition, trial number (within block), and their
interaction. We included random intercepts for grid worlds
and participants, and random slopes for trial number within
participants. There was no credible difference between par-
ticipants’ performance in the counterfactual and the experi-
ence condition (β =−0.01, 95% CrI [−0.066,0.043]). More-
over, the interaction between the counterfactual condition and
trial number was similarly not credible (β = 0.009, 95% CrI
[−0.019,0.001]), indicating no differential learning trajectory
across conditions.

We also examined whether any potential effects of coun-
terfactual simulation could be distinguished from the general
benefits of additional reasoning. Participants in the hypo-
thetical condition completed the same task structure as those
in the counterfactual condition but without conditioning on
prior observations (see task procedure). We tested whether
the experience trial paths made by participants assigned to
the counterfactual condition contained fewer unsafe tiles than
those assigned to the hypothetical condition using a simi-
lar Bayesian mixed-effects model using the same fixed and
random effects structure, except that the condition parame-
ter contained only the hypothetical and counterfactual con-
ditions. The results similarly indicated no evidence suggest-
ing that paths from the counterfactual condition were safer
than those from the hypothetical condition (β = −0.06, 95%
CrI [−0.13,0.01]). In particular, participants assigned to the
hypothetical condition encountered an estimated 4.82 unsafe
tiles (95% CrI [3.13,6.41]) in their experience trial paths,
while those assigned to the counterfactual condition encoun-
tered an estimate of 4.67 unsafe tiles (95% CrI [3.17,6.36]).

Taken together, these findings suggest that counterfactual
simulation alone may not be sufficient to yield substantial
improvements in planning outcomes within this task environ-
ment. To better distinguish between learning and planning,
we conducted a follow-up study that directly assessed partic-
ipants’ knowledge of the environment.

Figure 3: Experience trial performance. A Study 1 per-
formance. The x-axis shows the trial index, binned into
three segments. Participants encountered fewer unsafe tiles
as they progressed through the trials in the block. We did
find sufficient evidence to conclude any differences in perfor-
mance across our experimental conditions. B Study 2 perfor-
mance. Participants similarly encountered fewer unsafe tiles
as they gained more experience. Asking participants to simu-
late counterfactuals did not lead to better performance.

Study 2: Directly probing learning
Our primary goal in this study was to explore whether
performing counterfactual simulation can lead to improved
learning of the environments’ probabilistic structure. In
Study 1, we only assessed learning indirectly through partic-
ipants’ performance. While better learning should generally
translate to better performance, it is possible that counterfac-
tual simulation enhances knowledge in ways that do not im-
mediately manifest in navigation performance – for example,
by helping participants identify which paths are worth explor-
ing in future trials.

To address this limitation, we probed participants’ learned
representations more directly. After completing the learning
phase, participants engaged in an exam where they reported
which tiles they believed were safe or unsafe.

Methods
Participants and design Participants were recruited via
Prolific. A total of 98 participants (age: median = 36,
range = 21-72; gender: 56 female, 39 male, 3 non-binary;
race: 12 black/African American, 9 Asian, 7 multiracial, 68
white) completed the experiment, divided evenly among two
between-subjects conditions: experience-only and experience
+ counterfactual.

All participants were native English speakers residing in
the US. Participants were paid $3.5 for an estimated 15 min-
utes to complete the study (mean completion time: 24.9 mins.
Additionally, participants were awarded a bonus of up to
$1.20 depending on their performance on the task (mean
bonus: $0.39).

Task procedure The experiment consisted of two blocks
instead of four to reduce participant fatigue. Within each
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Figure 4: Exam trial. In Study 2, after completing the learn-
ing phase, participants were asked to report how safe they
believed each tile in the grid was. Participants did this by
clicking on each tile in the grid either once (for safe) or twice
(for unsafe), or vice versa.

block, participants completed a learning phase followed by
an exam phase. During the learning phase, participants com-
pleted 15 experience trials, guiding an agent from the start to
the goal location. The experience and counterfactual simula-
tion trials were identical to those in Study 1, with two mod-
ifications: (1) participants encountered only one road block
per trial instead of two, and (2) in the counterfactual con-
dition, participants started from the same location as in the
experience trial rather than from a designated spot on their
previous path. We did not include a hypothetical condition in
this study.

Figure 4 gives an example of an exam trial. Participants
viewed a grid of the environment and had to classify each
tile as safe or unsafe by clicking on it. They had to click
all tiles to proceed, and could click multiple times to change
the colors back and forth. By explicitly probing their knowl-
edge of which tiles are safe or unsafe, we can evaluate
whether counterfactual simulation improves participants’ en-
vironment learning.

Results and discussion

Performance on simulated paths Participants in the coun-
terfactual condition engaged meaningfully in counterfactual
reflection: counterfactual paths contained fewer unsafe tiles
than those taken in experience trials (see Figure 2).

A Bayesian mixed-effects model using a Poisson link func-
tion to model the distribution of unsafe tiles, with random in-
tercepts for gridworlds and participants, as well as random
slopes for counterfactual paths within participants revealed
a credible reduction in the number of unsafe tiles counter-
factual paths would have encountered (β = 0.13, 95% CrI
[0.10,0.17]). This indicates that participants understood the
task and engaged with counterfactual reflection meaningfully.
In the results below, we test our hypothesis that engaging in
counterfactual simulation yields better planning and decision
making, enabled by a more accurate mental representation of
the environment.

Performance on experienced paths To assess whether
participants in the counterfactual condition improved their
ability to avoid hazards, we fit a Bayesian mixed-effects
model with a Poisson linking function to the number of un-
safe tiles encountered in experience trials. The model in-
cluded fixed effects for condition (counterfactual = 1, ob-
servation = −1), trial number (within block), and their inter-
action. Random intercepts for gridworlds and participants,
as well as random slopes for trial number within partici-
pants, were also included. The results provided no evidence
that counterfactual reflection improved planning: there was
no credible main effect of condition (β = −0.00, 95% CrI
[−0.05,0.04]). Trial number was negatively associated with
hazard count (β = −0.01, 95% CrI [−0.013,−0.005]), sug-
gesting that participants improved with experience. The in-
teraction between condition and trial number was not credible
(β =−0.00, 95% CrI [−0.010,0.007]).

These findings suggest that while participants in both con-
ditions improved their navigation performance over time,
counterfactual reflection did not provide a measurable ad-
vantage in participants’ ability to avoid unsafe tiles (Fig-
ure 3b). Taken together, these findings suggest that coun-
terfactual simulation alone may not be sufficient to yield sub-
stantial improvements in planning outcomes or learning rates
within the task environment.

Performance on exam To test whether counterfactual re-
flection led to a more accurate understanding of the environ-
ment, we analyzed participants’ exam trial accuracy, which
measured how well participants identified tiles as safe or un-
safe (see Figure 5). A Bayesian mixed-effects model was fit
to the number of tiles correctly labeled as safe or unsafe, with
fixed effects for condition and random intercepts for grid-
worlds and participants. The model’s posterior estimate for
baseline performance (intercept) was 15.35 correct tiles (95%
CrI [12.06,18.21]) out of a maximum of 24. Since random
guessing would be expected to yield 12 correct responses
on average, these results indicate that participants generally
learned something about the environment, exceeding chance
performance. However, there was no credible main effect of
condition (β = 0.24, 95% CrI [−1.01,1.48]), suggesting that
participants in the counterfactual condition did not demon-
strate greater accuracy than those in the observation condi-
tion. In other words, there is little evidence that counterfac-
tual simulation enhanced participants’ understanding of the
gridworld environments.

While we found little evidence that counterfactual simu-
lation improved participants’ explicit knowledge of which
tiles were safe, this does not necessarily mean that partici-
pants in the counterfactual condition did not acquire a more
useful model of the environment. Specifically, they may
have learned a representation that was better adapted for lo-
cations relevant to navigation. To the extent that partici-
pants were bottlenecked by memory limitations, one might
ask whether counterfactual simulation plays a focusing role
on people’s mental representations – heightening attention to



Figure 5: Exam trial results. A The number of tiles par-
ticipants guessed correctly in the exam trial. Participants did
not guess more tiles correct in the counterfactual condition
than in the experience condition. B How many unsafe tiles
a rational planner would encounter when planning with the
participants’ exam responses. We did not find evidence that
the paths a rational planner would take when using exam re-
sponses from the counterfactual condition are safer than those
using responses from the experience condition.

performance-critical tiles and reinforcing learning where it
matters most.

To test this, we computed the average number of unsafe
tiles a rational planner would have encountered under the
probability distribution specified by participants’ exam re-
sponses in the trials they experienced within the same block
(Figure 5b). This characterizes participants’ exam responses
in a task-relevant manner because it privileges the impact an
inaccurate response would have when that inaccuracy is in an
area critical for efficient navigation. We fit a Bayesian mixed-
effects model with a Gamma linking function to the average
number of simulated unsafe tiles, with fixed effects for con-
dition and random intercepts for gridworlds and participants.
We found no credible main effect of condition (β = −0.04,
95% CrI [−0.13,0.05]), suggesting that counterfactual sim-
ulation did not lead to more task-relevant representations of
the environment compared to the experience-only condition.

General discussion
The present study examined whether counterfactual simula-
tion enhances learning. We explored this in a navigation task
and hypothesized that engaging in counterfactual simulations
would lead to improved planning and a more accurate men-
tal representation of the environment. However, our findings
did not support these hypotheses. Compared to participants
in the ‘experience-only’ condition, participants in the ‘expe-
rience + counterfactual simulation’ condition did not perform
better on navigation trials, nor did they learn the environment
better. This was the case even though participants took the
simulation part seriously, as evidenced by their performance
on the simulated trials.

Why did counterfactual simulation not improve learning?
One possible explanation for why counterfactual simulation
was not beneficial for learning is that forcing participants
to engage in mental simulation may have introduced cogni-

tive costs that outweighed its potential benefits. Prior work
suggests that people regulate their use of mental simulation
strategically, adjusting their cognitive effort based on task de-
mands and expected utility (Hamrick et al., 2015). In other
words, counterfactual simulation may indeed facilitate learn-
ing in some contexts, but our task may not have made it suf-
ficiently valuable relative to its cognitive cost. Our imple-
mentation of counterfactual simulation was highly explicit
and scaffolded by the task structure – participants had di-
rect visual access to prior experiences rather than relying on
their memories of the past. Future work could investigate
whether counterfactual simulation is more beneficial in con-
texts where it arises spontaneously rather than being exter-
nally imposed.

Another possibility is that counterfactual simulation was
simply the wrong form of “thought intervention” for this
task. Perhaps simulation is only helpful for model learning
to the extent that it makes participants spend more cogni-
tive resources towards encoding the experienced information
(Lefebvre et al., 2024). Future work could directly test this by
using explicit attention manipulations (e.g., prompting partic-
ipants to recall specific tile probabilities).

Finally, prior work suggests that counterfactual reasoning
may be most effective when learners already have a reason-
ably well-calibrated model of the world. Indeed, computa-
tional work has shown that attempting to learn a policy us-
ing simulated experiences from a model that is mismatched
with the actual environment can lead to poor generalization
and systematic failures (Jiang & Li, 2016; Talvitie, 2014). If
counterfactual simulation serves as a stand-in for real expe-
rience, as some work suggests (Anderson, 1983; Kappes &
Morewedge, 2016), then applying it in a setting where par-
ticipants’ initial models are highly inaccurate may do more
harm than good—introducing noise rather than facilitating
learning. Future research could investigate whether the effec-
tiveness of counterfactual simulation depends on the learner’s
prior knowledge, and whether its benefits emerge only when
their mental model is already somewhat aligned with reality.
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